High-Frequency Fiber-Optic Ultrasonic Sensor Using Air Micro-Bubble for Imaging of Seismic Physical Models
نویسندگان
چکیده
A micro-fiber-optic Fabry-Perot interferometer (FPI) is proposed and demonstrated experimentally for ultrasonic imaging of seismic physical models. The device consists of a micro-bubble followed by the end of a single-mode fiber (SMF). The micro-structure is formed by the discharging operation on a short segment of hollow-core fiber (HCF) that is spliced to the SMF. This micro FPI is sensitive to ultrasonic waves (UWs), especially to the high-frequency (up to 10 MHz) UW, thanks to its ultra-thin cavity wall and micro-diameter. A side-band filter technology is employed for the UW interrogation, and then the high signal-to-noise ratio (SNR) UW signal is achieved. Eventually the sensor is used for lateral imaging of the physical model by scanning UW detection and two-dimensional signal reconstruction.
منابع مشابه
UW Imaging of Seismic-Physical-Models in Air Using Fiber-Optic Fabry-Perot Interferometer
A fiber-optic Fabry-Perot interferometer (FPI) has been proposed and demonstrated for the ultrasound wave (UW) imaging of seismic-physical models. The sensor probe comprises a single mode fiber (SMF) that is inserted into a ceramic tube terminated by an ultra-thin gold film. The probe performs with an excellent UW sensitivity thanks to the nanolayer gold film, and thus is capable of detecting a...
متن کاملCompressible fiber optic micro-Fabry-Pérot cavity with ultra-high pressure sensitivity.
We propose and demonstrate a pressure sensor based on a micro air bubble at the end facet of a single mode fiber fusion spliced with a silica tube. When immersed into the liquid such as water, the air bubble essentially acts as a Fabry-Pérot interferometer cavity. Such a cavity can be compressed by the environmental pressure and the sensitivity obtained is >1000 nm/kPa, at least one order of ma...
متن کاملFiber - Optic Sensing of Linear Thermal Expansion (RESEARCH NOTES)
The use of a LED fiber-optic sensor to measure displacement and linear thermal expansion is described. It has a sensitivity of about 0.6 mV/mm, a resolution of 1.25 mm, and a dynamic rang of 400 mm for displacement measurements. For thermal expansion, it shows a sensitivity of about 3.5 mV/C, and the experimental linear expansion values are in agreement with those calculated. The reported senso...
متن کاملFiber Bragg Grating Sensors for the Oil Industry
With the oil and gas industry growing rapidly, increasing the yield and profit require advances in technology for cost-effective production in key areas of reservoir exploration and in oil-well production-management. In this paper we review our group's research into fiber Bragg gratings (FBGs) and their applications in the oil industry, especially in the well-logging field. FBG sensors used for...
متن کاملSeismic-frequency attenuation and moduli estimates using a fiber-optic strainmeter
We have developed a fiber-optic strainmeter to estimate velocities and attenuation at seismic frequencies. The two main advantages of the new system compared to strain gage techniques are the higher sensitivity to deformations (moduli) and phase lags (attenuation), and that estimates are representative of bulk values. While stress-strain measurements using strain gages or ultrasonic wave propag...
متن کامل